Tetrahedron Letters, Vol.30, No.6, pp 637-640, 1989 0040-4039/89 \$3.00 + .00 Printed in Great Britain Pergamon Press plc

PHOTOCHEMICALLY INDUCED REACTIONS OF CIS, CIS-CYCLOOCTADIENONE

Albert R. Matlin^{*}, Kyo Jin Department of Chemistry, Oberlin College Oberlin, Ohio 44074 USA

Abstract: Irradiation of 2,7-cyclooctadienone 1 produces cis,trans-2,7-cyclooctadienone 5 which has been characterized by low temperature ^{13}C NMR. Dienone 5 is in equilibrium with a zwitterionic oxyallyl species 6 via B, B bond formation. Zwitterion 6 forms cycloadducts with ethyl vinyl ether and 2-methoxypropene.

The photochemistry of cross conjugated dienones has been intensely studied over the past 25 years.¹ A typical reaction pathway for these systems involves bond formation across the β , β' carbons to produce a putative zwitterionic intermediate. In 1968 Haseltine and Crandall,² and Noyori and Kato³ reported that the irradiation of cis,cis-cyclooctadienone 1 in the presence of methanol or furan gave rise to the formation of 1:1 adducts which contained a cis-bicyclo[3.3.0]octanone ring system. Both groups suggested that a zwitterionic oxyallyl system 6 was a plausible intermediate. In addition, Haseltine and Crandall demonstrated that a reactive ground state species, which is stable at -78° C, intervenes between the excited state of 1 and the formation of adducts. Following our interest in the electronic structure and reactivity of non-Kekule systems,⁴ we recently reinvestigated the photochemistry of 1 as a potential entry onto an oxyallyl energy surface. Here we report the spectroscopic observation of cis,trans-cyclooctadienone 5 and the trapping of a reactive intermediate in a new way with electron-rich olefins.

638

Table 1.Irradiation of 2,7-cyclooctadienone in the presence of hexanes/vinyl ether (4/1) solutions.

Vinyl Ether	Products	<u>Yield</u> ^a
Ethyl Vinyl Ether	2a (73%), 3a (27%)	54
2-Methoxypropene	2b (53%) , 3b (47%)	62
a. Combined isolated yield after t	lash chromatography.	

Irradiation of dienone 1 (.05M in hexanes) in the presence of ethyl vinyl ether (EVE) or 2-methoxypropene (O° C, Rayonet Photochemical Reactor- 3500A lamps, 9 hours) gives rise to two families of 1:1 adducts. The adducts were isolated by flash chromatography and identified as the vinyl ether-ketals 2 and ketones 3 (Table 1).⁵ Upon treatment with 5% H₂SO₄ the diastereomeric mixtures 2a and 2b converge, respectively, to a single aldehyde 4a, or ketone 4b.⁵

Following the studies of Crandall and Haseltine, 1 was irradiated at -78° C in CH₂Cl₂ for one hour and then EVE or 2-methoxypropene was added in the dark. The reaction mixture was warmed to room temperature and analyzed. Adducts 2 and 3 were formed in about the same ratio as seen in the photochemical studies carried out in the presence of trap. These experiments indicate that a storeable ground state species is on the reaction pathway. When 1 is irradiated at $-78 \,^{\circ}$ C (CD₂Cl₂) and then examined at -78° C by ¹³C NMR, eight new signals appear at δ 196.5, 160.6, 152.0, 140.4, 127.9, 38.8, 33.1, 32.2. The new signals are about 1/10 as strong as 3 of the 5 signals (δ 193.7, 142.8, 135.2, 27.2, 24.8) displayed by dienone 1 suggesting that the photoproduct is formed in about 20% under these conditions. The NMR data requires that 1 is isomerized to a compound of lower symmetry and that this compound contains 4 olefinic carbons, 3 alkyl carbons, and 1 carbonyl group. These data are in accord with the photochemical conversion of 1 to the cis, trans isomer 5. In the absence of trapping agent the cis, trans isomer 5 is stable for several hours at 0° C.

Strained trans cyclic enones typically suffer nucleophilic attack at the β position and give [2+2] adducts with olefins. For example, irradiation of cis-2-cyclooctenone generates the trans isomer which reacts in the dark with methanol to give "Michael" addition products⁶ and affords head-to-head [2+2] cycloadducts with 1,1-dimethoxyethylene.⁷ In the photo-induced reactions of 1 we have not observed any [2+2] adducts even when EVE or methoxypropene was used as the solvent.⁸ In the present system, the observed products require that bond formation occur at the α -carbon of the enone skeleton. Therefore the trans isomer **5** while on the reaction pathway does not appear to be the intermediate that reacts with the olefin. Trans dienone **5** may be in equilibrium with the oxyallyl species via a thermal conrotatory ring closure/opening process.⁹

The formation of adducts 2 and 3 can be conceived as being derived from the capture of the oxyallyl intermediate in a step-wise fashion. The nucleophilic olefin attacks the oxyallyl species preferentially from the convex face, followed by intramolecular C and O-alkylation of the resultant enolate. Oxyallyl zwitterions are typically captured in concerted [4+2] cycloadditions by dienes (*vide supra*).¹⁰ Trapping of simple oxyallyl intermediates with electron-rich olefins presents a novel and intriguing new reaction pathway.^{11,12}

Acknowledgements. We thank the donors of the Petroleum Research Foundation, administered by the American Chemical Society and the Oberlin College Research and Development Committee, for financial support of this work.

Notes and References

- a) K. Schaffner, M. M. Demuth in *Rearrangements in Ground and Excited States*, Vol. 3, P. deMayo, Ed., Academic Press, NY, 1980; b) D. I. Schuster, Acc. Chem. Res. 1 978, <u>11</u>, 65; c) M. C. Pirrung, D. S. Nunn, Tetrahedron Lett., 1988, <u>29</u>, 163; d) A. G. Schultz, F. P. Lavieri, M. Macielag, Tetrahedron Lett. 1986, <u>27</u>, 1481.
- 2. J. K. Crandall, R. P. Haseltine, J. Am. Chem. Soc. 1968, 90, 6251.
- 3. R. Noyori, M. Kato, Tetrahedron Lett., 1968, 5075.
- a) A. R. Matlin, T. A. Inglin, J. A. Berson, J. Am. Chem. Soc., 1982, <u>104</u>, 4954; b) M. Rule, A. R. Matlin, D. E. Seeger, E. F. Hilinski, D. A. Dougherty, J. A. Berson, *Tetrahedron*, 1982, <u>38</u>, 787.
- 5. All new compounds have been characterized by ¹H and ¹³C (DEPT) NMR, IR and MS.
- 6. H. Hart, E. Dunkelblum, J. Am. Chem. Soc., 1978, 100, 5141.
- 7. E. J. Corey, J. D. Bass, R. LeMahiev, R. B. Mitra, J. Am. Chem. Soc., 1964, 86, 5570.
- When dienone 1 was irradiated in neat EVE the product ratio changed to 88% 2a and 12% 3a. No shift in the product composition is observed in the reaction of 1 with neat 2methoxypropene.
- The transformation of 1 to 5 to 6 was originally proposed by Haseltine; see R. P. Haseltine, Ph. D. Thesis, University of Indiana, 1970; University Microfilms # 70-19,095, Ann Arbor, Michigan.
- a) N. J. Turro, Pure and Appl. Chem., 1971, <u>27</u>, 679; b) N. J. Turro, S. S. Edelson, S. S. Williams, T. R. Darling, W. B. Hammond, J. Am. Chem. Soc., 1969, <u>91</u>, 2283.
- Haseltine did not observe any 1:1 adducts when dienone 1 was irradiated in the presence of 1,2-dichloroethylene, vinyl acetate or dimethyl acetylenedicarboxylate. See reference 9.
- Noyori has reported that formal (3+2) oxyallyl-olefin cycloadditions can be effected using α,α'-dibromoketone-Fe₂(CO)₉ systems. See R. Noyori, Acc. Chem. Res., 1979, 12, 61.

(Received in USA 2 November 1988)